“Exact” and Approximate Methods for Bayesian Inference: Stochastic Volatility Case Study

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference Methods for Stochastic Volatility Models

In the present paper we consider estimation procedures for stationary Stochastic Volatility models, making inferences about the latent volatility of the process. We show that a sequence of generalized least squares regressions enables us to determine the estimates. Finally, we make inferences iteratively by using the Kalman Filter algorithm.

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference for Multivariate Stochastic Volatility Models

In this report we apply Integrated Nested Laplace approximation (INLA) to a series of multivariate stochastic volatility models. These are a useful construct in financial time series analysis and can be formulated as latent Gaussian Markov Random Field (GMRF) models. This popular class of models is characterised by a GMRF as the second stage of the hierarchical structure and a vector of hyperpa...

متن کامل

Exact likelihood inference for autoregressive gamma stochastic volatility models

Affine stochastic volatility models are widely applicable and appear regularly in empirical finance and macroeconomics. The likelihood function for this class of models is in the form of a high-dimensional integral that does not have a closed-form solution and is difficult to compute accurately. This paper develops a method to compute the likelihood function for discrete-time models that is acc...

متن کامل

Stochastic Gradient Descent as Approximate Bayesian Inference

Stochastic Gradient Descent with a constant learning rate (constant SGD) simulates a Markov chain with a stationary distribution. With this perspective, we derive several new results. (1) We show that constant SGD can be used as an approximate Bayesian posterior inference algorithm. Specifically, we show how to adjust the tuning parameters of constant SGD to best match the stationary distributi...

متن کامل

Conditioning Methods for Exact and Approximate Inference in Causal Networks

We present two algorithms for exact and ap­ proximate inference in causal networks. The first algorithm, dynamic conditioning, is a re­ finement of cutset conditioning that has lin­ ear complexity on some networks for which cutset conditioning is exponential. The sec­ ond algorithm, B-conditioning, is an algo­ rithm for approximate inference that allows one to trade-off the quality of approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2021

ISSN: 1099-4300

DOI: 10.3390/e23040466